
24 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 12, NO. 1, JANUARY 2002

Parallel Implementation of the Steepest Descent Fast
Multipole Method (SDFMM) on a Beowulf Cluster

for Subsurface Sensing Applications
D. Jiang, W. Meleis, M. El-Shenawee, E. Mizan, M. Ashouei, and C. Rappaport

Abstract—We present the parallel, MPI-based implementation
of the SDFMM computer code using a thirty two-node Intel
Pentium-based Beowulf cluster. The SDFMM is a fast algorithm
that is a hybridization of the method of moments (MoMs), the fast
multipole method (FMM), and the steepest descent integration
path (SDP), which is used to solve large-scale linear systems of
equations produced in electromagnetic scattering problems. An
overall speedup of 7.2 has been achieved on the 32-processor
Beowulf cluster and a significant reduced runtime is achieved on
the 4-processor 667 MHz Alpha workstation.

Index Terms—Fast algorithms, parallelization, SDFMM, sub-
surface sensing.

I. INTRODUCTION

T HE SDFMM was originally developed at the University
of Illinois at Urbana Champaign to analyze large-scale

three dimension (3-D) scattering problems [1]–[3]. Recently,
its computer code has been successfully modified to handle
subsurface sensing applications, in particular, the scattering
from a PEC and/or penetrable spheroid buried under a two
dimensional randomly rough ground surface [4], [5]. The
SDFMM has computational complexity for CPU time and
computer memory equal to only per iteration versus

for the method of moments (MoMs), where is the
total number of the unknowns [1]. The significantly reduced
complexity of the SDFMM over several other computational
electromagnetics techniques has enabled efficient Monte Carlo
simulation studies [5]. Additional speedup is desirable for
increased Monte Carlo sample size or for inverse scattering
applications. In this work, we used the MPI library for the
parallel implementation of the SDFMM code [6]–[8].

II. PARALLELIZATION

The SDFMM is used to solve the linear system of equations
given by [1]–[5]:

(1a)

Manuscript received July 18, 2001; revised October 21, 2001. This work was
supported by the ERC Program of the NSF under Award EEC-9986821, in part
by the ARO Demining MURI Grant DAA 0-55-97-0013, and by the College of
Engineering at the University of Arkansas. The review of this letter was arranged
by Associate Editor Dr. Arvind Sharma.

D. Jiang, W. Meleis, E. Mizan, M. Ashouei, and C. Rappaport are with the
Department of Electrical and Computer Engineering, Northeastern University,
Boston, MA 02115 USA (e-mail: meleis@ece.neu.edu).

M. El-Shenawee is with the Department of Electrical Engineering, University
of Arkansas, Fayetteville, AR 72701 USA (e-mail: magda@uark.edu).

Publisher Item Identifier S 1531-1309(02)00869-3.

where is the impedance matrix, is the vector of unknown
coefficients of the electric and magnetic surface currents, and
is associated with the incident waves on the rough ground sur-
face. The matrix , which is filled in the MoM formulations,
becomes sparse with using the SDFMM and the system of equa-
tions in (1a) can be written as

(1b)

The sparse matrix has its nonzero elements calculated and
stored using the conventional MoM, which are then multiplied
by the vector (near field interactions) while the matrix–vector
multiply is computed in one step without calculating or
storing any elements of the matrix . This is achieved by using
the fast multipole method (FMM) hybridized with the steepest
descent integration path (SDP).

The following three bottlenecks in the SDFMM code can ben-
efit from being parallelized: i) the subroutines that calculate the
elements of the sparse matrix; ii) the subroutines that exe-
cute the matrix–vector multiplication in each iteration of
the solver; iii) the subroutines that execute the fast multipole
method for (far field interactions).

The computer code has been parallelized by exploiting the
underlying available data parallelism. The key data structure in
subroutine i) is the sparse matrix, which is stored as blocks of
nonzero elements. These blocks are distributed among all pro-
cessors, and no additional communication is needed. When this
routine is parallelized, we achieved near-linear speedups on 32
processors. In the matrix–vector multiplication , the compu-
tation is parallelized by distributing to all processors in each
iteration. The resulting vector components produced by the mul-
tiplication are then distributed to all processors. For bottleneck
iii), there are two involved subroutines to compute the far field
interactions consisting of a series of loops with complex interde-
pendences. Each loop is separately parallelized, with collective
communication used to distribute the results to all processors
after executing each subroutine. In addition, these two subrou-
tines are executed in parallel, followed by subsequent distribu-
tion of the results to all processors. Load balance between these
two subroutines is achieved using a detailed performance model
based on the serial execution time of each routine, the time re-
quired for collective communication operations, and the amount
of communication overhead needed. The structure of the paral-
lelized SDFMM application is shown in Fig. 1.

We evaluated the parallel implementation of the SDFMM
computer code on a 32-node Intel Pentium-based Beowulf

1531–1309/02$17.00 © 2002 IEEE

JIANG et al.: PARALLEL IMPLEMENTATION OF THE STEEPEST DESCENT FAST MULTIPOLE METHOD (SDFMM) 25

Fig. 1. Structure of the parallelized SDFMM application.

cluster. Thirty one nodes of the Beowulf cluster are 350 MHz
Intel Pentium IIs with 256 MB of RAM and one node is a
4 450 MHz Intel Pentium II Xeon shared memory processor
with 2 GB of RAM. The nodes are connected to a 100 BaseTX
Ethernet network and they use the SuSE 6.1 operating system
with Linux kernel 2.2.13, and the MPICH 1.2.1 implementation
of the MPI library. We also tested the parallelized code on a
4-node shared memory Compaq Alpha-based workstation (667
Mhz Alpha 21 264) of 16 GB total RAM. The processor uses
the UNIX OSF/1 V5.1 operating system with the MPICH 1.1.2
MPI library.

Our benchmark includes three small-scale cases executed on
the 256 MB Intel cluster, and in addition one moderate-scale
case that is executed on the Alpha workstation. All results ob-
tained by executing the parallel version of the code are vali-
dated with those computed by the serial version of the code
[4], [5]. The scattering problem configurations used in [5] are
employed here, but for only one rough surface realization. The
rough ground (characterized by Gaussian statistics with zero
mean for the height), is described by the rms height () and the
correlation length (). In all cases, the relative dielectric con-
stant of the ground soil (dry sand) and the penetrable buried
object (TNT in a land mine) are and

, respectively, and the ground correlation length
is . A Gaussian beam with horizontal polarization
is employed for the incident waves [5]. In Case 2, the buried
sphere has radius of with burial depth equal to

measured from its center to the mean plane of
the ground, while in Case 3 and 4 the buried spheroid has di-
mensions and , and is buried at

. The ground dimensions are in Cases 1–3
and in Case 4. Table I summarizes the parameters
and output results for Cases 1–4.

The speedup of a parallelized application is defined as the
ratio of the serial runtime to the parallel runtime. In Fig. 2, the
overall speedup and the speedup for the initialization routine
(filling matrix) are plotted versus the number of processors
for Case 1. The speedup curves for Cases 2 and 3 are similar,
with slightly different peak values of 6.2 and 7.2, respectively.
The results show the significant speedup in the initialization
time that is needed to fill the sparse matrix. This initializa-
tion speedup affects the overall speedup of the code. In each
case, the peak overall speedup is observed when running on 32

TABLE I
OVERALL SPEEDUP FORCASES1-4

Fig. 2. Speedup for the three separate bottlenecks in the code, versus the
number of processors on the Beowulf cluster.

processors, but most of this speedup is achieved using only 12
processors.

The efficiency of an application for a given number of proces-
sors is defined as the ratio of the speedup to the number of pro-
cessors. Over Cases 1–3, the average speedup on 32 processors
is 6.8, giving an efficiency of 0.21. Based on the serial runtimes,
88% of the code is executed in parallel. Therefore, by Amdahl’s
Law [9], the peak speedup achievable for the current paralleliza-
tion of the code is 8.3. We conclude that communication over-
head and load imbalance among the processors accounts for the
reduction in speedup from 8.3 to 6.8.

A comparison between the speedups achieved in the other
bottlenecks i)–iii) is also shown in Fig. 2. These results
demonstrate that the overall speedup is almost the same as that
achieved in the matrix–vector multiplication which is the
bottleneck in ii).

In the second set of experiments, we solved the moderate-
scale problem of Case 4 (60 320 unknowns) on the Alpha SMP
using all four available processors. The overall speedup in this
case is 2.5, which is close to the predicted peak speedup of 2.9.
This implies that executing the parallel code on the 4-Alpha 667
MHz processor gives an impressive reduced absolute runtime
for this moderate-scale case. The serial version of the code re-
quires 950 MB of memory, while the parallel version requires
1154 MB of memory distributed over four processors (288, 290,
289 and 287 MB each). The results of the parallel solution were
identical to those of the serial implementation presented in [5].

The results described in this section demonstrate that by ex-
ploiting fine-grained parallelism within a single surface realiza-

26 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 12, NO. 1, JANUARY 2002

tion (one run of the code), we have achieved speedups. How-
ever, when the number of rough surface realizations is much
larger than the number of available processors, as with Monte
Carlo simulations, larger speedups are possible. This situation
occurs when we need to run Monte Carlo simulations [5]. In this
case, we assign a group of these realizations (runs of the code)
to be executed in parallel on each processor. Since the compu-
tations are independent and little communication is needed, this
coarse-grained parallelism gives a perfect speedup that is only
limited by the number of available processors. In other subsur-
face scattering configurations, we may need to obtain multiple
views of a target buried under the same rough surface realization
[4], which requires running the code only few times. A combi-
nation of fine and coarse-grained parallelism can make efficient
use of all available processors.

III. CONCLUSIONS

MPI is successfully employed for the parallel implementation
of the SDFMM. A significant overall speedup of 7.2 has been
achieved on the 32-processor Beowulf cluster and a dramatic
reduced runtime is gained using the 4-processor Alpha work-
station. The greatest potential for speedup occurs in the sparse
matrix filling step.

ACKNOWLEDGMENT

The authors would like to thank Prof. W. Chew and Prof. E.
Michielssen at UIUC for allowing them the use and modifica-
tion of the SDFMM computer code for the current application.

REFERENCES

[1] V. Jandhyala, “Fast multilevel algorithms for the efficient electromag-
netic analysis of quasiplanar structures,” Ph.D. dissertation, Dept. Elect.
Comput. Eng., Univ. Illinois, Urbana-Champaign, 1998.

[2] V. Jandhyala, B. Shanker, E. Michielssen, and W. C. Chew, “A fast algo-
rithm for the analysis of scattering by dielectric rough surfaces,”J. Opt.
Soc. Amer. A, vol. 15, no. 7, pp. 1877–1885, July 1998.

[3] M. El-Shenawee, V. Jandhyala, E. Michielssen, and W. C. Chew, “The
steepest descent fast multipole method (SDFMM) for solving combined
field integral equation pertinent to rough surface scattering,” inProc.
IEEE APS/URSI ’99 Conf., Orlando, FL, July 1999, pp. 534–537.

[4] M. El-Shenawee, C. Rappaport, E. Miller, and M. Silevitch, “3-D sub-
surface analysis of electromagnetic scattering from penetrable/PEC ob-
jects buried under rough surfaces: Use of the steepest descent fast multi-
pole method (SDFMM),”IEEE Trans. Geosci. Remote Sensing, vol. 39,
pp. 1174–1182, June 2001.

[5] M. El-Shenawee, C. Rappaport, and M. Silevitch, “Monte Carlo simu-
lations of electromagnetic wave scattering from random rough surface
with 3-D penetrable buried object: Mine detection application using the
SDFMM,” J. Opt. Soc. Amer. A, Aug. 2001.

[6] “Message passing interface forum. MPI: A message-passing interface-
standard,”Int. J. Supercomput. Applicat. High Perform. Comput., no. 8,
1994.

[7] S. V. Velamparambil, J. E. Schutt-Aine, J. G. Nickel, J. M. Song, and W.
C. Chew, “Solving large scale electromagnetic problems using a linux
cluster and parallel MLFMA,” inIEEE Antennas Propagat. Symp., vol.
1, July 1999, pp. 636–639.

[8] S. Li, C. H. Chan, L. Tsang, Q. Li, and L. Zhou, “Parallel implemen-
tation of the sparse matrix/canonical grid method for the analysis of
two-dimensional random rough surfaces (three-dimensional scattering
problem) on a Beowulf system,”IEEE Trans. Geosci. Remote Sensing,
vol. 38, pp. 1600–1608, July 2000.

[9] G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” inProc. AFIPS Spring Joint
Comput. Conf. 30, Atlantic City, NJ, Apr. 1967, pp. 483–485.

	MTT024
	Return to Contents

